1. Motion, forces and energy

1.8 Pressure

Paper 3 and 4

Answer Key

Paper 3

Q1.

2(c)	(pressure =) 6.3 (N / cm ²)	А3
	(pressure =) 240 ÷ 38	(C2)
	(pressure =) force \div area OR (p) = $F \div A$	(C1)

Q2.

3(c)	0.19 (N / cm²)	А3
	(<i>P</i> =) 8.5 ÷ 44	(C2)
	(P =) F + A in any form	(C1)

Q3.

Question	Answer	Marks
5(a)	(P =) F ÷ A OR (pressure =) force ÷ area in any form	C1
	12 ÷ 25	C1
	0.48 (N / cm²)	A1

Q4.

Question	Answer	Marks
3(a)	P = F ÷ A in any form	C1
	120 ÷ 0.5	C1
	240 (N/cm²)	A1
3(b)	Less (than)	B1
3(c)	elastic OR strain OR potential	B1

Q5.

Question	Answer	Marks	
(b)	P = F/A in any form	C1	
	30 ÷ 12	C1	
	2.5	A1	
	N/cm ²	B1	

Q6.

	3.9	A4
(c)	280/72	C3
	(P =) F/A OR (pressure =) force/area	C1
	(area = 4 × 18 =) 72 (cm²)	C1
	N/cm ²	B1

Paper 4

Q7.

Question	Answer	Marks
3(a)	particles (of liquid) are touching / close to each other	B1
	forces (of repulsion) between particles (of liquid) are large	B1
3(b)(i)	$(\Delta p =) \rho g(\Delta)h$	B1
	$1000 \times 9.8 \times 0.087$ OR ($\Delta p =$) 852.6 (Pa)	B1
3(b)(ii)	12 N	A2
	$p = F/A \text{ OR } (F =) pA \text{ OR } 850 \times 0.014$	C1
3(b)(iii)	1.2 kg	A2
	g = W/m OR (m =) F/g OR 12/9.8	C1

Q8.

Question	Answer	Marks
3(a)	(force of gravity / weight of person is spread over a much) greater area	B1
	$p = F/A \text{ OR } p \propto 1/A$	B1
	(force is same so) pressure is lower (so ice is less likely to crack)	B1
3(b)	5.8 × 10 ³ Pa	A4
	p (due to water) = ρgh OR (p =) ρgh OR (p =) 1000 × 9.8 × 0.45 OR (p =) 4410	C1
	$W = mg \text{ OR } (W =) mg \text{ OR } (W =) (690 \times 9.8) \text{ OR } (W =) 6762 \text{ OR } (p \text{ (due to ice)} =) 1352.4$	C1
	(pressure =) candidate's calculated pressure due to water + candidate's calculated pressure due to ice OR total pressure = $[1000 \times 9.8 \times 0.45] + [(690 \times 9.8)/5.0]$ OR total pressure = $4410 + 1352.4$	C1

Q9.

Question	Answer	Marks
4(a)(i)	240 N	A2
	$F = pA$ in any form or $1.0 \times 10^5 \times 2.4 \times 10^{-3}$	C1
4(a)(ii)	5.0 J	A2
	WD = Fx_1 or 240×0.021	C1

Q10.

1(c)	(P =) 8200 Pa	А3
	$(P =) h \rho g$	C1
	(P =) 1020 × 10 × 0.8(00) (Pa)	C1
	OR	
	(P=) F/A	(C1)
	F = mg OR $F = 1020 \times 0.8(00) \times 3.72 \times 10$	(C1)

Q11.

Question	Answer	Marks
3(a)	molecules (already very) close / touching	B1
	(repulsive) forces (very) large	B1
3(b)(i)	6.5 × 10 ⁵ Pa	А3
	$(p =) F/A$ in any form or 8800 / 0.016 or $(F_{air} =)1.0 \times 10^5 \times 0.016$	C1
	5.5 × 10 ⁵ or 5.5 × 10 ⁵ (+ 1.0 × 10 ⁵) or (1600 + 8800) / 0.016	C1
3(b)(ii)	pressure due to (increased height of) oil in cylinder mentioned or pressure (in liquid) increases as depth increases	B1
	to keep the upwards force constant or to lift the (extra) oil or to counteract / oppose the increased pressure / force / weight of the oil	B1
3(b)(iii)	(initial) force has to be greater than 8800 N to start the motion or the upwards force (just) balances the weight (so no movement) or piston / oil has weight or friction (between moving parts)	B1

Q12.

Question	Answer	Marks
3(a)(i)	W = (4.8 × 10 =) 48 N	1
3(a)(ii)	$(P =) F + A OR 48 + (0.12 \times 0.16)$	1
	2500 Pa	1
3(b)	Atmospheric pressure (in addition to liquid pressure)	1